Радиотехническая аппаратура и ее применение

УДК 621.396.969

Использование метода биорadiолокации для оценки двигательной активности лабораторных животных

© Авторы, 2010

Л.Н. Анищенко — аспирант факультета «Биомедицинская техника» МГТУ им. Н.Э. Баумана.
E-mail: anishchenko@rslab.ru.
Л.Н. Анищенко — аспирант факультета «Биомедицинская техника» МГТУ им. Н.Э. Баумана.
E-mail: anishchenko@rslab.ru.
Л.Н. Анищенко — аспирант факультета «Биомедицинская техника» МГТУ им. Н.Э. Баумана.
E-mail: anishchenko@rslab.ru.
Л.Н. Анищенко — аспирант факультета «Биомедицинская техника» МГТУ им. Н.Э. Баумана.
E-mail: anishchenko@rslab.ru.

Предложен метод оценки двигательной активности малых лабораторных животных с помощью биорадиолокатора. Данный метод может быть использован в ходе фармакологических и зоопсихологических экспериментов. Представлены результаты для различных состояний животного. Проанализированы специфические особенности спектров для этих состояний.

Ключевые слова: биорадиолокация, мониторинг движения, дыхание.

A method for estimation of the laboratory animals' movement activity by means of bio-radar is proposed. The method could be used in time of zoopsychological and pharmacological experiments. The experimental results for different states for the animal are presented. Specific features of frequency spectrums for these states are analyzed.

Keywords: bio-radiolocation, movement monitoring, breathing.

Введение

Биорадиолокация [1] (метод дистанционного обнаружения и диагностики биологических объектов, в том числе за оптически непрозрачными препятствиями) является интенсивно развивающимся направлением радиотехники [2-4]. Существует ряд медико-инженерных задач, для решения которых использование радиолокационных средств является актуальным. Среди них — медицина катастроф (поиск выживших под завалами строительных конструкций), мониторинг параметров дыхания и сердцебиения у ожоговых больных (снижает количество контактных датчиков и, следовательно, риск занесения инфекции в ожоговые раны больного), диагностика анэоза, а также мониторинг параметров дыхания и сердцебиения у больных, являющихся переносчиками особо опасных инфекционных заболеваний (позволит снизить риск заражения медицинского персонала), и др. [2, 4, 5].

Кроме перечисленных областей применения представляет интерес использование биорадиолокации для дистанционной диагностики состояния здоровья лабораторных животных на основании анализа их двигательной активности, а также применение данного метода при проведении зоопсихологических экспериментов по оценке ориентировочно-исследовательского поведения крыс.
В настоящее время при апробации лекарственных препаратов и отправляющих веществ на лабораторных животных для оценки их реакции используются инвазивные методы измерения физиологических параметров, при этом эффект двигательной активности осуствляется исследователем визуально. Аналогично обстоит дело и с методами оценки поведенческих реакций животного. Для снижения нагрузки на оператора и автоматизации оценки двигательной активности могут быть использованы специально разработанные системы видеонаблюдения, такие как Ethovision [6]. Главным недостатком такого типа систем является достаточно большой объем записываемой информации. Кроме того, дальнейший анализ получаемого видеосигнала требует использования весьма сложных алгоритмов обработки.

Существуют и другие устройства для автоматизированной оценки параметров двигательной активности лабораторных животных. Некоторые из них содержат вмонтированные в пол клетки датчики давления, позволяющие оценивать перемещение животного в клетке [7]. В других устройствах применяются индикаторы света и оптические сенсоры, вмонтированные в стены клетки [8]. Также для аналогичных целей предложено использовать электромагнитное излучение [9], при этом приемные и передающие антенны монтируют на пол и стены клетки. В [10] описано применение доплеровского радиолокатора для оценки двигательной активности крыс, зондирование пространства клетки осуществляется "в надир", что не позволяет измерять перемещения животных, перпендикулярные оси антенны радиолокатора.

Общим недостатком всех перечисленных устройств является сложность изготовления клетки, в которую помещают животное при проведении эксперимента, а также то, что устройства рассчитаны на определенный вид животных, так как созданы с учетом его специфических морфометрических особенностей.

В силу изложенных причин в большинстве случаев на практике оценка двигательной активности животных производится исследователем визуально [11], что может влиять на качество получаемой информации.

Основным преимуществом радиолокационных датчиков является возможность непосредственной интегральной оценки двигательной активности крыс в автоматизированном режиме за длительный период, при этом объем файла данных настолько мал по сравнению с видеофайлом, что позволяет вести непрерывную запись в течение нескольких дней и более. В разработанной экспериментальной установке приемная и передающая антенны размещены на общем щитке, который располагается сбоку от клетки. Данный метод в отличии от устройств, описанных в [7–10], не требует использования клеток специальной конструкции, достаточно применения пластикового контейнера, в котором обычно содержат животных в лабораториях.

Автоматизированное распознавание различных типов движения животного (горизонтальная и вертикальная двигательная активность, умывание, покой) при помощи биорадиолокатора потребует разработки специальных алгоритмов, которые принципиально проще алгоритмов для обработки визуальной информации, так как основаны на амплитудных и частотных характеристиках регистрируемого радиолокационного сигнала. Это позволяет в дальнейшем применять их для анализа данных экспериментов, проводимых с использованием методов "открытого поля", т. е. предоставления животному возможности свободного выбора пути и местонахождения в пространстве, огороженного стенками и по мере надобности устройствами, обеспечивающими структурными компонентами — предметами, убачками и т. п. [12]. Этот метод является основным при проведении зоопсихологических экспериментов.

Экспериментальная установка

В качестве биорадиолокатора в экспериментах по оценке двигательной активности и частоты дыхания крыс был использован многочастотный радар с квадратурным приемником, разработанный в Лаборатории дистанционного зондирования МГТУ им. Н.Э. Баумана.

Технические характеристики радара
Количество частот 16
Частота дискретизации, Гц 62,5
Полоса частот, ГГц 3,6 ... 4,0
Разрешение по дальности, м 0,5
Частоты регистрируемых сигналов, Гц 0,03 ... 5
Динамический диапазон регистрируемых сигналов, дБ 60
Размеры антенного блока, мм 150×370×370

Хотя данный радиолокатор был разработан для дистанционного мониторинга параметров двигательной активности, дыхания и пульса человека, он также может быть использован для отслеживания движений малых лабораторных животных.
Также приведем справочные данные, характеризующие организм крысы как объект биорадиолокационного исследования [13]:

длина тела – 15...25 см;
длина хвоста – 15...25 см;
поперечный размер грудной клетки – 4...6 см;
частота дыхания – 1,2...1,6 Гц;
частота пульса – 6,0...7,0 Гц.

Как видно из сравнения параметров радиолокатора и характерных размеров крысы на их длине укладывается несколько длины волны, что обеспечивает достаточную величину эффективной поверхности рассеяния и уровень регистрируемого сигнала при зондировании с расстояния около метра. Однако, так как биорадиолокатор создавался для наблюдения за человеком, частота сердцебиения животного превышает верхнюю границу частотного диапазона регистрируемых радаром сигналов. Поэтому более высокие частоты фильтровались во избежание интерференции с промышленной частотой 50 Гц.

Как известно, в классической радиолокации плотность потока мощности P_e вблизи приемной антенны радиолокатора при совмещенных приемопередающих антеннах обратно пропорциональна расстоянию до объекта локации r в четвертой степени [14]:

$$ P_e \approx \frac{1}{r^4}. \tag{1} $$

Следовательно, мощность сигнала, отраженного от животного и принимаемого биорадиолокатором, существенно зависит от расстояния между антенным блоком и животным. Например, для размеров клетки 60×60×60 см и расстояния до локатора, равного от 1 до 1,5 м, мощность принимаемого сигнала для крайнего дальнего положения животного в клетке составляет не менее 15% от аналогичного параметра для крайнего ближнего положения. Данный факт делает невозможной корректную оценку двигательной активности животных без точного измерения дальности до объекта.

Для снижения уровня зависимости регистрируемого сигнала от положения крысы в клетке был применен угловой отражатель (УО) [15], который формировался полом и двумя боковыми стенками клетки, прымывающими к дальней от радиолокатора, вершине (а на рис. 1, где представлена схема проведения эксперимента). Указанные стенки клетки обклеивались металлической фольгой для повышения коэффициента отражения.

Рис. 1

Для удобства обозначим расстояние от радиолокатора до вершины УО l, а расстояние от животного до вершины УО – x. На расстоянии l за УО формируется мнимый источник. В этом случае мнимый передатчик и приемник получают расположенные по разные стороны от объекта зондирования и симметрично относительно вершины УО. Таким образом, при использовании УО имеет место «просветная» схема радиолокации, для которой мощность принимаемого сигнала P_n имеет существенно другую зависимость от расстояния между антенной и объектом локации [16]:

$$ P_n \approx \frac{1}{(l-x)^2(l+x)^2} = \frac{1}{l^4 \left(1 - \frac{x}{l}\right)^2 \left(1 + \frac{x}{l}\right)^2}. \tag{2} $$

При этом зависимость P_n от расстояния x более пологая, чем для случая совмещенной приемно-передающей антенны (1). Для наглядности на
рис. 2 приведены зависимости мощностей принимаемого сигнала от перемещения объекта относительно дальнего угла клетки, где 1 — совмещенная приемно-передающая антенна, 2 — «просветная» схема при наличии УО.

Результаты экспериментов

Ниже приведены некоторые результаты экспериментов. На рис. 3 показан сигнал биорадиолокатора, отраженный от животного (1 — спокойное состояние, 2 — физическая активность). Без какой-либо дополнительной обработки периоды относительно покоя и повышенной двигательной активности хорошо различимы.

Были получены спектры отраженного радиолокационного сигнала для различных состояний животного (рис. 4, а — активное движение, б — спокойное состояние, в — сон, г — умывание). Они имеют значительные различия по частотным характеристикам и амплитуде, что позволяет сделать вывод о возможности отличать состояние покоя от активных движений, умывания и сна животного. Для удобства сравнения частотных спектров для различных состояний животного амплитуда спектра приведена в линейном масштабе (шкала по вертикальной оси пропорциональна квадратному корню из амплитуды).

Спектр, приведенный на рис. 4,а, соответствует активному состоянии животного. В течение эксперимента крыса обследовала внутреннее пространство бокса. Она двигалась вдоль стенок коробки и время от времени поднималась на задние лапы. Главной особенностью спектра принимаемого сигнала в этом случае является достаточно большая амплитуда максимальной спектральной составляющей, которая значительно превышает аналогичную величину для других состояний животного. Спектр на рис. 4,б соответствует спокойному состоянию животного (в течение эксперимента крыса сидела в углу бокса и изредка двигалась или поворачивала голову). Максимальная амплитуда в спектре более чем в 3 раза ниже, чем для активного состояния животного.

Для случая, когда животное спало (рис. 4,в), мощность принимаемого сигнала чрезвычайно мала. Так как животное не двигалось, то в спектре
Радиотехническая аппаратура и ее применение

Рис. 4

сигнала различия гармоника дыхания на частоте 1.5 Гц, что хорошо согласуется с литературными материалами [13].

Спектр, соответствующий периоду умывания крысы, приведен на рис.4а. Специфичной особенностью этого спектра является наличие локального максимума в области 4 Гц. Частота спектра, соответствующая умыванию, в значительной степени зависит от времени суток и варьируется от 2 до 4 Гц. Днем эта частота ниже, чем в течение ночи. Главная проблема при распознавании данного типа движений состоит в том, что животное может очень интенсивно поворачиваться при умывании, и эти артефакты движения маскируют полезный сигнал.

Предполагается создание нового биорадиолокатора, который будет работать в более высоком частотном диапазоне (14...15 ГГц). Это повысит разрешающую способность радара в экспериментах с малыми лабораторными животными и улучшит, таким образом, качество получаемой информации. Математическое обеспечение этого прибора будет включать алгоритмы распознавания типов движения крыс.

Показано, что метод биорадиолокации может быть использован для оценки двигательной активности малых лабораторных животных. В случае, когда животное спит, можно оценивать его частоту дыхания без каких-либо дополнительных процедур. Этого может быть достаточно для контроля за состоянием животного в фармакологии. С помощью метода биорадиолокации возможно выделять различные типы движений и состояний животного без проведения каких-либо дополнительных процедур.

Литература

15. Патент № 85242. Радиолокационная система регистрации движений лабораторного животного в пределах ограниченного пространства / Л.Н. Амшенко, И.А. Васильев, С.И. Ивашов.

Поступила 12 августа 2009 г.

Application of Bioradiolocation for Estimation of the Laboratory Animals’ Movement Activity

© Authors, 2010

Radiolocation of biological objects named as bioradiolocation is an intensively developing area of bio-medical engineering. There are some important medical tasks which could be applications fields of radiolocation, among them are disaster medicine (searching of survivals under debris and rubbles of buildings), monitoring of breath and heart breathing parameters for burned patients (it would cut down the number of used contact sensors and thus decrease the risk of infection inoculation into burning wounds), sleep apnea diagnostics, monitoring of breath and heart breathing parameters for sick persons, which are the carriers of extra-hazardous infections (it would decrease the risk of medical staff infection), and etc [1, 2].

Besides the over listed fields of application there is an interest in usage of bioradiolocation for remote diagnostics of rats and other laboratory animals by estimation of their moving activity in time of zoopsychological and pharmacological experiments.

At present, invasive methods of physiological parameters determination are used during testing of some medicine and poisonous substances on laboratory animals. Their moving activity used to be estimated visually by researcher. It could be pointed another method that is currently in use for animals’ behavior reaction analysis. Specially designed video tracking system such as Ethovision [6] can be applied to decrease a workload of the researcher and create automatic approach to estimation of moving activity. The main disadvantage of this type of systems is necessity to use sophisticated software and some restriction on long time recording with duration more than several hours because of data storage capacity limitations. So, that is why in most cases estimation of rats’ moving activity is carried out by researcher visually [11], which might cause in the quality of obtained information.

Doppler radar has advantage of direct measurements of animal’s moving parameters. It can be used for creation of a fully automatic moving activity integral estimation procedure. In this case the size of data is so small comparing to the video file that it would allow to record data continuously during several days or more. Moreover in condition of creation special recognition algorithms of radar signals that were reflected from animal, it would be possible to discriminate different types of its movements (horizontal and vertical activities, grooming, steady state). In that case bioradiolocation can be also applied to data analysis of the open field experiments.