
ABSTRACT 

MICROWAVE HOLOGRAM RECONSTRUCTION FOR 
THE RASCAN TYPE SUBSURFACE RADAR 

V.V. Chapursky 
Central Research Institute of Radio Electronic Systems 

69, Pr. Mira, Moscow, 129110, Russia 

S.I. Ivashov, V.V. Razevig, A.P. Sheyko, l.A. Vasilyev 
Remote Sensing Laboratory 

P.O. Box 101, Moscow, 129626, Russia 
rslab@rslab.ru 

In this paper the mathematical models and results on process- 
ing the experimental single-frequency microwave holograms 
received by scanning subsurface radar with sine wave signal 
are submitted. The holograms reconstruction method with the 
use of support functions, which take into account the near 
field of the aperture antenna with round cylindrical 
waveguide, is analysed. The models consider both known and 
unknown phase shift of the signal reflected from the point 
object. It is theoretically and experimentally shown that sin- 
gle-frequency holograms reconstruction allows to estimate 
depth of shallowly buried objects and improve the resolution 
on the probing surface with the growth of objects depths. 

Key words: Subsurface radar, Microwave hologram, Recon- 
struction algorithm, Near and reactive fields. 

INTRODUCTION 

Subsurface holographic radar of the RASCAN type uses con- 
tinuous wave unmodulated signals, which are transmitted in 
single-frequency or multi-frequency modes (Vasiliev et al., 
1999). In the radar antenna, signal reflected from the object 
mixes with reference one. To obtain holographic images the 
radar antenna scans two-dimensionally along interface of 
lossy half-space. The amplitudes of received signal are re- 
corded in discrete set of points at the surface (x, y, z=O), Fig. 
1 . Measured amplitudes of the radar signal are displayed as 
microwave holograms on computer screen. 

The antenna with cylindrical waveguide, which is used in the 
radar, has about one and a half wavelength diameter, which 

corresponds to 6...7 cm for frequency range of 3.6...4.O GHz. 
The antenna operates as the gauge of the reflected electro- 

magnetic (EM) waves in the near and reactive fields for ob- 
jects depths from zero level up to 20...25 cm. 

Since the images recorded by radar are microwave holo- 
grams, it is impossible to determine the objects depths under 
the scanning surface without the appropriate processing. 
Moreover horizontal resolution is deteriorated with the in- 
crease of depth. This effect is typical for all types of subsur- 
face radars (Daniels, 1996). 

Figure 1. 2D data acquisition using 
the RASCAN subsurface radar. 

In this paper interpretation of recording and reconstruction of 
the microwave holograms for subsurface radar of the 
RASCAN type is given. As an approximation, the scalar 
model of the field emitted by the aperture antenna is chosen. 
The hologram reconstruction, executed with the help of the 
developed theoretical models, enables to improve the hori- 
zontal resolution with the increase of objects depths and es- 
timate their depths. 

The essential feature of the models, in comparison with ear- 
her works (Junkin, and Anderson, 1988; Popov, Kopeikin, 
and Vinogradov, 2000), is that registration of holograms by 
the RASCAN radar is carried out in the near and reactive 
fields of the real antenna aperture. In the analysis that fol- 
lows, we shall consider monochromatic microwave holo- 
grams reconstruction for two variants of signal registration: 

a) The case of the complex amplitude-phase hologram 
recorded by the receiver with two quadrature chan- 
nels. 

b) The case of the amplitude hologram recorded with 
the use of amplitude receiver. 

In both cases the presence of the constant leakage (reference) 
signal of transmitter with the unknown phase difference in 
relation to the phase of a scattered object wave is taken into 
account. 
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MATHEMATICAL MODEL OF THE SYNTHESIZED 
MICROWAVE HOLOGRAM FOR POINT OBJECTS 

For the analysis of microwave holograms received by 
RASCAN subsurface radar on the surface (x, y, z=O) we 
consider model of observation of a point object at the depth 
ZZT in lossy half-space. By a point object we mean the ob- 
ject with dimensions much smaller than the wavelength. 
Let's consider, that the waveguide diameter of the antenna is 
equal to D. 

Analyzing real and imaginary components of the complex 
hologram, we proceed from the scalar Fresnel-Kirchhoff in- 

tegral equation (Skolnik, 1970; Papylis 1971) for the near and 
reactive fields of the antenna equitable for one component of 
the EM field vector. At the uniform amplitude and phase ex- 
citation of the circular aperture the transformation from Car- 
tesian to polar coordinates in the Fresnel-Kirchhoff integral 
equation gives us the complex amplitude of the field as fol- 

where N is the number of objects; U0 is the reference (or 

leakage) signal with constant phase and amplitude; U(x, y) 
is the variable component of the complex hologram; a0, q0 

are the amplitude and the phase of the reference signal; a1 
and çoTj are the amplitude and the unknown phases of the sig- 
nals reflected from the objects; J'I(x, y) is the noise func- 

tion; A(p, z) and t(p, z) are functions of z and p, which 

are tabulated with the help of eqns. 1 and 2 (for the consid- 
ered medium characteristics, diameter of the aperture D and 
frequencyf). 
In the case of the coherent quadrature reception device, the 

complex hologram E(x, y) is observed. For the single ob- 

ject N=1 and in absence of noise the microwave hologram 
after compensation of a reference signal is represented as 

(x,y) = aA ((x — XT) + (y — Yr)2 ZT) 
I I \ ) (4) 

xexp ti J(x_x)2 +(yYr)2 ;z)+jço4, 

(1) 
where coT is the unknown phase of the reflected signal from 
the object. 

For case of using the amplitude receiver, the square of the 
complex hologram modulus is observed. In absence of noise 
it can be described as follows 

h(x,y)=U0+U(x,y)2 = 
(5) 

I0 12 +U(x,y)2 + 2Re {U0* .J(x,y)}. 
The basic information of the amplitude hologram (eqn. 5) is 
represented in the third summand, which has thin oscillatory 
structure. The second summand corresponds to a square of 
the envelope of these oscillations in the changed scale. In the 
case of the sole object under the surface and at conditions of 

(2) aT I a0 << 1 , deletion of the constant component, and ab- 

sence of noise, eqn. 5 can be written as 

h (x, y) 2a a0 A ((x — xT)2 + (y — Y)2 zT) 

xcos {(y(x_xT)2+(y_yT)2 ;ZT)+} , 
(6) 

where q=p —q is the unknown phase shift of the object 
with regard to the reference signal phase. 

For single-frequency case, Fig. 2 shows the result of the cal- 
(3) culation of the synthesized complex hologram quadrature 

components according to the proposed model for the point 
object at the depth z=15 cm. 

x [1 + 

x(1+ )]dtid8, 

where p=Jx2 -i-y2 ; 

is the complex wave number of the lossy medium with rela- 
tive permittivity e and conductivity a ; c is absolute permit- 
tivity of free space; & and are circular frequency and 
wavelength of EM field in vacuum accordingly. As far as the 
same aperture antenna performs reception and transmission 
of a signal, the received EM wave is proportional to the 
square of eqn. 1 

The substitution of variables x2 + y2 in eqn. 2 allows to 
find the complex two-dimensional hologram of the point ob- 
ject located at the depth z in the point (0, 0, z). 

For several point objects with coordinates YTI' zr) the 
complex microwave hologram is expressed as 

xexp{j ((x_xT)2 ;)+iTi}+(x,y), 

Proc. SPIE Vol. 4758 521



/\ (\ 

E .::T 
I I 

RECONSTRUCTION ALGORITHMS FOR COMPLEX 
AND AMPLITUDE SINGLE-FREQUENCY 
MICROWAVE HOLOGRAMS 

Reconstruction of microwave holograms is similar to opti- 
mum processing of time-dependent signals (Shirman, 1970), 
when instead of time t spatial variable (x, y) in the recording 
plane of holographic signal is used. 

The complex and amplitude holograms in eqns. 4 and 6 have 
differences in reception and processing methods because of 
presence of the unknown phases ço and ço. Dependence or 
independence of hologram energy in coordinates (x, y) from 
essential parameters of the holograms (Xv, Yr ZT) and from 
non-essential interfering parameters ço and ço is important for 
the theory under investigation. For the single object with cx- 

pected coordinates (x0, Yo' z0), complex and amplitude holo- 

grams energies in eqns. 4 and 6 can be written as 

eK(zo)2JJA(Vx+y;zo)dxdy, (7) 

e(z0,ço)=4a a1 

xJ$A2(+y2;zo)cos2{/x+y2;;)+co}dxdy 
. 

(8) 

These equations show that the displacement x0 and Yo and 

interfering parameter coT don't affect the complex hologram 
energy. The depth of the object is an energy influential pa- 
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rameter; as far as it influences width of the hologram main 
lobe on coordinates (x, y), see Fig. 2. This also confirms 
analogy with the optimum detection theory of the radar im- 

pulse signals. In case of the amplitude hologram the phase ço 
also becomes the energy influential parameter, which is 
caused by the absence of the second quadrature component. 

Quadrature Coherent Receiver 

For the case of quadrature coherent reception, we choose the 
complex hologram of the point object (eqn. 4) with expected 
coordinates (x0, Yo' z0) at the zero phase shift of signal reflec- 
tion from the object as the support function for reconstruction 

procedure 

(x_xo,y_yo;zo)=A((x_xo)2+(y_yo)2 ;z0) 

x exp { j ((x — x0 )2 + (y — y0)2 z0 ) } . 
(9) 

For the case of complex hologram with the unknown phase 
c°r, on the basis of analogy to time-dependent signal with the 
unknown phase (Shirman, 1970) the likelihood equation can 
be described as 

A(x0,y0,z0)= 
ex{_ 

e(z0 
)}Io[Q(xoYozo)J 

, (10) 

where Io(P) 5 modified Bessel's function and 
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Figure 2. Quadrature components ofthe microwave hologram (eqn. 4) at D=6 cm, 
f=3.7 GHz, e =35, o=102, and depth ofthe object z =15 cm. 
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2 
is modulus of complex correlation integral. 

Amplitude Receiver 

If we consider the case of amplitude receiver, we assume that 

condition aT I a0 << 1 is valid. In this case, it is possible to 

disregard the second term U(x,y2 in eqn. 5. Then as sup- 

port function for hologram reconstruction we choose the am- 

plitude hologram ofthe point object (eqn. 6) with coordinates 

( x0, Yo' z0) 

S(x—;,y—y0;z) =A ((x_x)2 +—y0)2 ; 

xcos { ((X_;)2 +—y0)2 ;z)+}. 
For the amplitude hologram h(x, y) of the object with the 
known phase ço at the background of spatially non-correlated 

noise N(x, y) with spectral density N0 by analogy to the 

theory of time-dependent signal with the known phase (Shir- 
man, 1970) the likelihood equation can be written as follows 

A(x0 , yo , zo , 

I e(z0,co) 2 

=expl— +—Q(x0,y0,z0)1 

where 

Q,(x0,y0,z0)= JJh(x,y)S,(x—x0,y—y0;z0)dxdy 

and the energy of the amplitude hologram is calculated ac- 
cording to eqn. 8. In order to get an optimal algorithm of 
hologram reconstruction the averaging of likelihood equation 
should be carried out in view of energy dependence on the 
signal phase 

A(x0,y0,z0)=1JA(x0,y0,z0;)d 2,r 
(15) 

If the object depth is in the Fresnel zone of the antenna, the 
energy with the increase ofz0 becomes asymptotic to ek(z0)12, 
which is not depended on phase ço. Therefore this likelihood 
equation takes the regular form of eqns. 10 and 1 1 with two 
differences. Firstly, the average energy on both quadratures 
of the expected hologram, which is equal to half of the com- 

plex hologram energy, is used as the amplitude hologram 
energy. Secondly, the amplitude hologram is used in the cor- 
relation integral modulus (eqn. 1 1) instead of the complex 

hologram, i.e. U(x, y) = h(x, y)' 

ez 2 

A(xoYozo)exP{_ 
(16) 

Q(x0,y0,z0)=JJh(x,y)S(x—x0,y—y0;zo)dxdy. (17) 

In case of the coherent and amplitude receivers, the result of 
microwave hologram reconstruction can be presented by the 
functions A(x0, Yo' z0) or Q(x0, Yo' z0) constructed in three- 
dimensional space (x0, Yo' z0) or in its cross-sections. For the 
correlation integral, which is not being strictly optimal, a 
distortion of reconstruction results on variable z0 occurs. The 
reason is absence of the multiplier, which depends on energy 
of the hologram and is taken into account in case of the like- 
lihood equation. 

EXPERIMENTAL RESULTS 

The packet, consisting of thirty plasterboards with dimen- 
(12) 1.5 m by 1.5 m, was used as the test bed. The packet 

thickness was 40 cm. Different objects were placed between 
the boards. Objects under investigation consisted of two 
metal wires, bugging device placed between the wires, seven 
coins of 25 mm diameter under bugging device, and cavity in 
second plasterboard. The coins were placed at different 
depths in the packet. Depths of coins and cavity are depicted 
in the Table 1. 

Table I 

(13) 

(14) 

Object Number Object Type Depth (cm) 
1 coin 2.5 
2 coin 5.0 

3 coin 7.5 

4 cavity 1.25 
5 coin 10.0 
6 coin 12.5 
7 coin 15.0 

8 coin 17.5 

The amplitude microwave hologram of test bed at frequency 
of 3.7 GHz (see Fig. 3) was used to examine validity of the 
developed reconstruction models. In this case the correlation 

algorithm (eqn. 14) and algorithm of reconstruction, which is 
based on the likelihood equation (eqn. 13) with the known 

phase ço changing in range 0°-180°, were used. The phase 
value with best reconstruction result is considered as the 
closest to the actual value. 

Hologram reconstruction (eqns. 13 and 14) with the known 

phase was carried out with the use of the support function of 
the point object (eqn. 12). In this algorithm we also used be- 
forehand-tabulated dependences of the amplitude A(p, z) and 

phase P('p, z), which were placed in matrixes with dimen- 
sions 101 on p and 21 on z with the appropriate step for these 
variables. 
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Figure 3. The microwave hologram of the test bed received by RASCAN radar at frequency of 3.7 GHz. 

The results of reconstruction with the use of the correlation 

algorithm (eqn. 14) for eight selected objects with six phase 
values are submitted in a Fig. 4 in the form of gray images. 
At each phase value the images represent correlation integral 
modulus (eqn. 14) in two depth cross-sections, which are 

perpendicular to horizontal surface of the test bed and cross 
the objects centers on two lines. The left column of the im- 

ages corresponds to shallowly buried objects 1-4, and the 

right column corresponds to deeper objects 5-8. Greater 

brightness on the images matches greater value of the corre- 
lation integral modulus. Judging by the examined images, it 
is clear that holograms reconstruction takes place and its effi- 

ciency is most brightly expressed for the deeper objects 5-8. 

If phase value equals to 900, the maximum brightness of the 
images corresponds to depths: 9.3 cm, 1 1 .7 cm, 14.9 cm, and 
17.4 cm, which coincides well with the actual depths of ob- 
jects 5-8. If phase value doesn't equal to 900, we have either 
absence of reconstructed image or erroneous value of depth. 
For objects 1 and 4 (the depths equal to 2.5 cm and 1.25 cm) 
it is practically impossible to reconstruct hologram at any 
value of initial phase. It is apparently a consequence of some 

discrepancy of the Fresnel-Kirchhoff scalar model with real- 
ity and replacement of the real antenna by the common-mode 

aperture antenna. 

The sizes of reconstructed "spots" on a horizontal plane at 
zero depth don't surpass the antenna aperture diameter and 
on level 0.5 - 0.7 correspond to about half of the antenna di- 
ameter, i.e. 3 cm. This value is much less than the initial im- 

ages diameters of objects 5-8 on the hologram (see Fig. 3). 

We could acquire nearly the same results with the use of re- 
construction algorithm on the basis of the likelihood equation 
(eqn. 13). In this case the estimation approaching to the ac- 
tual values of an objects depths also corresponds to phase 
90°. Reconstruction of the hologram is also possible for ob- 

jects 2 and 3. Their depths errors amount to 1.5 and 2.5 cm, 
respectively. For deeper objects the errors are almost the 
same as for correlation algorithm. The main difference from 
the results in Fig. 4 is that the images change period for the 
correlation integral modulus depending on the phase is equal 
to 180°. While as the images change period for the likelihood 

equation, in which value of correlation integral is used, 
equals 360°. 
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Figure 4. Holograms reconstruction in depth with the help of 

correlation algorithm with the known phase ço for objects 1-8. 
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The analysis of occurring changes in the images testifies that 
with the increase of phase ço in the reconstruction function 

(eqn. 12) bright spots, corresponding to the position of ob- 
jects on depth, move upwards. Thus the position of the bright 
spots becomes closer to the actual depths of objects at the 
actual phase value. Further increase of the phase results in 
reduction of the spot brightness and increasing of its diameter 
with further displacement in the area of smaller depths and 
finally to destruction of the spot. The process lasts as long as 
the phase again doesn't reach the beginning of the next pe- 
riod. Similar periodic changes of the images with reconstruc- 
tion function phase change obviously give more complete 
picture of synthesized holograms reconstruction and more 
correct and accurate estimation of object depth using correct 
criterion, than reconstruction on the basis of phase averaging 

CONCLUSIONS 

In this paper the algorithms of the holograms reconstruction, 
obtained by RASCAN radar, are proposed. The algorithms 
take into account phases of the reference signal and signal 
reflected from the subsurface point object. The proposed 
mathematical models are based on the use of the amplitude- 
phase characteristics of the near and reactive fields consid- 
ered in scalar approximation with the help of the Fresnel- 
Kirchhoff integral equation for the circular antenna aperture. 

The model allows to develop reconstruction method for the 
complex and amplitude single-frequency holograms synthe- 
sized at scanning of the RASCAN antenna on surface of 
lossy half-space with known permittivity. The method is 
analogous to optimum processing of time-dependent signals 
with known and unknown initial phase. 

Reconstruction of the experimental microwave hologram 
with the use of the point object hologram as a support holo- 
gram confirms theoretical assumptions on depth resolution 

improvement for monochromatic mode operation of the sub- 
surface radar considered. The further efforts and research will 
be devoted to the reconstruction algorithms of the radar 
multi-frequency holograms. 

in the likelihood equation (eqn. 16) or modulus of complex 
correlation integral (eqn. 17). 

These conclusions are confirmed by the results of hologram 
reconstruction with the help of correlation algorithm (eqn. 
17) for objects 1-8 (see Fig. 5), and also by similar results 
with the use of the algorithm according to eqn. 16. It can be 
seen that the depth resolution, which determines quality of 
hologram reconstruction, is better for algorithm with the 
known phase than for algorithm with the unknown phase 
according to eqn. 16. 

Moreover the estimated value of depth, which corresponds to 
the maximal brightness of the image, is bigger than the actual 
one. For the known phase the estimated value of depth 
doesn't differ much from the exact value. 
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